Bipedalism in lizards: whole-body modelling reveals a possible spandrel.
نویسندگان
چکیده
This paper illustrates how simple mechanical models based on morphological, ethological, ecological and phylogenetic data can add to discussions in evolutionary biology. Bipedal locomotion has evolved on numerous occasions in lizards. Traits that appear repeatedly in independent evolutionary lines are often considered adaptive, but the exact advantages of bipedal locomotion in lizards remain debated. Earlier claims that bipedalism would increase maximal running speed or would be energetically advantageous have been questioned. Here, we use 'whole body' mechanical modelling to provide an alternative solution to the riddle. The starting point is the intermittent running style combined with the need for a high manoeuvrability characterizing many small lizard species. Manoeuvrability benefits from a caudal shift of the centre of mass of the body (body-COM), because forces to change the heading and to align the body to this new heading do not conflict with each other. The caudally situated body-COM, however, might result in a lift of the front part of the body when accelerating (intermittent style), thus resulting in bipedal running bouts. Based on a momentum-impulse approach the effect of acceleration is quantified for a mechanical model, a virtual lizard (three segments) based on the morphometrics of Acanthodactylus erythrurus (a small lacertid lizard). Biologically relevant input (dimensions, inertial properties, step cycle information, etc.) results in an important lift of the front part of the body and observable distances passively covered bipedally as a consequence of the acceleration. In this way, no functional explanation of the phenomenon of lizard bipedalism is required and bipedalism can probably be considered non-adaptive in many cases. This does not exclude, however, some species that may have turned this consequence to their benefit. For instance, instantaneous manipulation of the position of the centre of the body-COM allows stable, persisting bipedal running. Once this was achieved, the bipedal spandrel could be exploited further.
منابع مشابه
The functional origin of dinosaur bipedalism: Cumulative evidence from bipedally inclined reptiles and disinclined mammals.
Bipedalism is a trait basal to, and widespread among, dinosaurs. It has been previously argued that bipedalism arose in the ancestors of dinosaurs for the function of freeing the forelimbs to serve as predatory weapons. However, this argument does not explain why bipedalism was retained among numerous herbivorous groups of dinosaurs. We argue that bipedalism arose in the dinosaur line for the p...
متن کاملBipedal locomotion in Tropidurus torquatus (Wied, 1820) and Liolaemus lutzae Mertens, 1938.
Bipedalism has evolved on numerous occasions in phylogenetically diverse lizard families. In this paper we describe, for the first time, bipedal locomotion on South American lizards, the sand-dweller Liolaemus lutzae and the generalist Tropidurus torquatus. The lizards were videotaped running on a racetrack and the sequences were analyzed frame by frame. The body posture, as a whole, diverged a...
متن کاملWhy go bipedal? Locomotion and morphology in Australian agamid lizards.
Bipedal locomotion by lizards has previously been considered to provide a locomotory advantage. We examined this premise for a group of quadrupedal Australian agamid lizards, which vary in the extent to which they will become bipedal. The percentage of strides that each species ran bipedally, recorded using high speed video cameras, was positively related to body size and the proximity of the b...
متن کاملPrevalence and intensity of coccidian blood parasite infection in three species of lizards from Markazi Province, Iran
Coccidian (Apicomplexa: Coccidia) parasites have been reported in almost all groups of vertebrates. These parasites may cause serious ecological and pathological effects to their hosts. Reptiles were found the be the host of the parasites of the genera Schellackia and Lankesterella, as these parasites undergo their entire life cycle in the reptilian body, with an intermediate stage of dormancy ...
متن کاملGround reaction forces and center of mass mechanics of bipedal capuchin monkeys: implications for the evolution of human bipedalism.
Tufted capuchin monkeys are known to use both quadrupedalism and bipedalism in their natural environments. Although previous studies have investigated limb kinematics and metabolic costs, their ground reaction forces (GRFs) and center of mass (CoM) mechanics during two and four-legged locomotion are unknown. Here, we determine the hind limb GRFs and CoM energy, work, and power during bipedalism...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Philosophical transactions of the Royal Society of London. Series B, Biological sciences
دوره 358 1437 شماره
صفحات -
تاریخ انتشار 2003